45 research outputs found

    Channel Estimation for Ambient Backscatter Communication Systems with Massive-Antenna Reader

    Get PDF
    Ambient backscatter, an emerging green communication technology, has aroused great interest from both academia and industry. One open problem for ambient backscatter communication (AmBC) systems is channel estimation for a massive-antenna reader. In this paper, we focus on channel estimation problem in AmBC systems with uniform linear array (ULA) at the reader which consists of large number of antennas. We first design a two-step method to jointly estimate channel gains and direction of arrivals (DoAs), and then refine the estimates through angular rotation. Additionally, Cramer-Rao lower bounds (CRLBs) are derived for both the modulus of the channel gain and the DoA estimates. Simulations are then provided to validate the analysis, and to show the efficiency of the proposed approach.Comment: 5 figures, submitted to IEEE Transactions on Vehicular Technology, 29 March, 201

    Secrecy Outage Probability Analysis of Multi-User Multi-Eavesdropper Wireless Systems

    Full text link
    In this paper, we explore the physical-layer security of a multi-user wireless system that consists of multiple users intending to transmit to a base station (BS), while multiple eavesdroppers attempt to tap the user transmissions. We examine the employment of multi-user scheduling for improving the transmission security against eavesdropping and propose a multi-user scheduling scheme, which only requires the channel state information (CSI) of BS without the need of the passive eavesdroppers' CSI. We also consider the round-robin scheduling for comparison purposes. The closed-form secrecy outage probability expressions of the round-robin scheduling and proposed multi-user scheduling are derived over Rayleigh fading channels. Numerical results demonstrate that the proposed multi-user scheduling outperforms the round-robin scheduling in terms of the secrecy outage probability. As the number of users increases, the secrecy outage probability of round-robin scheduling keeps unchanged. By contrast, the secrecy outage performance of the proposed multi-user scheduling improves significantly with an increasing number of users.Comment: 5 page
    corecore